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Abstract: A model Numerical Control (NC) machine tool dynamic compliance is analyzed,
including the influence of its mechanical structure and position control feed drive algorithms.
The dynamic model of the machine tool is divided into two main parts, which are closest to the
machining process. First, the milling head assembly group is presented as a system of one mass
oscillating in a 2D plane and 3D space. Second, the motion axes assembly group, XY cross table with
linear feed drive, is presented. A square 2× 2 dimension matrix of the total dynamic compliance is
evaluated within the feed drive control system included. Partial elements of the mechanical structure
dynamic compliance matrix of the general N ×N dimension are contained in the total dynamic
compliance matrix.

Keywords: machine tool dynamics; chatter; feed drive control; modelling

1. Introduction

Chatter in machining represents a key limiting factor for achieving higher machining productivity.
Increased vibration during machining results in higher spindle load, lower cutting tool lifetime,
and deteriorated workpiece surface quality. The main sources of chatter result from machine tool
and workpiece dynamic properties and the process force interaction between the cutting tool and
the workpiece.

Typically, attention in modelling and predicting the machining stability focuses primarily on
machine tool structural dynamics. In most cases, a simplified oscillator model composed of a
mass-spring-damper, which is described by a second order transfer function, is considered as a
representation of machine tool dynamic properties [1–3]. Another possible approach is a 2D planar
model with mass oscillation in two degrees of freedom [4]. In complex tasks, Finite Element Method
(FEM) is used for modelling and researching machine tool dynamics.

On the contrary, dynamic compliance of feed drive control and its impact on machining stability
is the focus of research in only a few works [5,6]. Machining stability taking into account a simple
proportional-derivative (PD) controller is demonstrated by Lehotzky [7]. The impact of cascade
control feed drive parameters of motion axes with linear motors on machining stability is presented
by Beudaert [8]. In this work, a simplified two-mass model of the mechanical axis system including
the cutting force model is used. The impact of the feed drive control tuning on the process stability
limit is demonstrated. Franco [9] performs experimental validation of the impact of feed drive control
parameters using a test bench with linear motors and demonstrates performance improvement of
chatter stability limits. The experimental equipment consists of a single axis and a two-mass vibrating
system with appropriately selected stiffness and damping values. An analysis of machining stability
limits on a mid-sized lathe with a ball-screw-driven X-axis is presented in [4] with application on
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the mid-sized lathe and Franco [10] in the double motor preloaded pinion and rack case. Recently,
Beudaert presented a new feed drive controller tuning strategy enhancing machining stability in [11].

To determine the size of the limit chip width according to the classical theory [1], it is necessary
to find a frequency range, where the real part of the machine tool dynamic compliance reaches its
negative minimum. According to this process, the critical depth of cut blim as a dependency of the
frequency ω and the cutting force coefficient Kc is expressed by Equation (1). A graphical indication
of the critical chip thickness (the limits of stability by the Nyquist diagram) is introduced in [12],
which has become a standard (e.g., Altintas [13] or Smith [14]). Here, however, only simplified second
order dynamic models are considered. Representation of the critical depth of cut dependency on the
spindle speed is provided by the stability lobe diagram (SLD). The calculation procedure for getting
the SLD is introduced in detail in, e.g., [1,2] or [15].

bcrit =
1

2Kc
∣∣∣ReGy( jω)

∣∣∣ (1)

Weck [16] presents chatter-describing models with the force input signal. This paper works
consistently with the setpoint chip thickness as an input signal. Some works present a concept of
complex cutting force coefficients in detail Drobílek [17]. This approach is based on inner and outer
cutting force modulation. However, validation of this principle for its use in the machining stability
theory was not satisfactorily proved.

In this paper, a model of the directional dynamic properties of a CNC vertical machining center,
including the feed drive control, is developed and used for the analysis of the impact of feed drive
control setting on the machining stability limits. The machining center is equipped with linear motors
on the XY cross table. The model of machine tool dynamics is considered as a sum of the spindle and
XY cross table parts, including the X and Y axis feed drive control. The schematics of the feedback
regenerative principle of real chip thickness resulting from the interaction of machine tool structural
and control dynamics, expressed by the overall compliance Gy(s), with cutting process, expressed by
cutting force coefficient Kc, chip thickness b, and FF as the additional transfer function, expressing the
dependency of Kc on process parameters [18], is illustrated in Figure 1. The input to the feedback
scheme is setpoint chip thickness.
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Figure 1. Feedback regenerative principle for calculating real chip thickness.

2. Proposed Methodology

The machine tool (Figure 2) dynamic model is composed of two parts, representing the Z-axis
vertical column with the spindle unit and XY cross table. The Z-axis drive is equipped with a linear
motor, while the XY cross table is equipped with linear motors as well. The spindle unit is described
by the GS( jω) transfer function and the XY cross table is represented by the GR( jω) transfer function
(Figure 3).
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Figure 2. Vertical milling center MCFV 5050 LN (TAJMAC-ZPS, Zlín, Czechia).
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Figure 3. Scheme of machine tool structural parts modeled by GS and GR dynamic compliance.

The XY cross table dynamic system can be divided into the mechanical structure part described
by the Gmech( jω) transfer function and the feed drive control part described by the Greg( jω) transfer
function. The overall dynamic compliance Gy( jω) is expressed as a sum of the structural and control
parts, as indicated by Equation (2). The overall Gy( jω) is evaluated in the XY plane, thus enabling
evaluation of the most critical direction of machine tool dynamic behavior with respect to the directional
dynamic compliance. At the same time, Gy( jω) is used to evaluate the impact of X and Y motion
axis feed drive control parameters on the stable cut limits. The procedure of obtaining the directional
dynamic compliance of the machine tool mechanical structure at a spindle and XY cross table is
described in the following chapters.

Gy( jω) = GS( jω) + GR( jω) (2)

where: GR(jω) = Greg(jω) + Gmech(jω)
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3. Spindle Dynamic Compliance

A model of directional dynamic compliance of the spindle unit is developed based on
measurements. Direct dynamic compliance measurements were executed in parallel with the XY cross
table with the use of an electric-dynamic vibration source and one-axis accelerometer. This process is
deemed more reliable compared to the use of a modal hammer. The measurements were taken starting
in the negative direction of axis Y and proceeded in the 1◦ step in the clockwise direction (Figure 4).
Every single measurement consisted of the force excitation by the sinusoidal harmonic signal with an
amplitude of 31.5 N from 1 Hz to 200 Hz by the step of 1 Hz. Data acquisition at each frequency was
performed until the steady state was reached, with a pause of 1 s before the subsequent measurement.
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Figure 4. Mid-sized milling machine with vibration source (a) schematic top view (b).

Direct dynamic compliance as a function of the angle ϕ at the first six eigenfrequencies (22 Hz,
65 Hz, 96 Hz, 120 Hz, 130 Hz, and 164 Hz) is plotted in Figure 5.
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The single-mass model for spindle representation with up to three degrees of freedom of general
oscillation in 3D space is being examined (Figure 6). Modal transformation from physical coordinates to
modal coordinates is chosen for model description. The frequency transfer function of the system is then
expressed by the sum of the contributions of the three eigenmodes (i = 1 to 3), which can be chosen for
a specific case of a mechanical system to represent a significant part of the system dynamic properties.
To create a model, it is necessary to know the weight of the spindle mass. Unknow stiffness values of
the springs in the model are found by fitting the experimentally obtained frequency transfer functions.
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GF(s) =
uF(s)
F(s)

=
3∑

i=1

(
vT

i CF
)2

s2 + 2ςqiΩis + Ω2
i

(3)

uF Displacement in the force direction
Ωi Natural frequency
ςqi Modal damping
vi Eigenvectors
CF Directional force cosine vector

Transfer function GF(s) allows the model to have three eigenfrequencies with the respect of 3D
space and two eigenfrequencies in the plane area for i = 2.

By substituting for s = 0 in Equation (3), the surface of direct static compliance can be obtained.
There are six points of contact touching the embraced non-rotary ellipsoid of compliance (see Figure 7)
where the real force application points are when the 3D space force is applied in the whole spherical
4π steradian range (this could be described as a certain form of Lamé’s stress ellipsoid used in the
analysis of the tension tensors in the classical flexibility theory applied to homogenous materials).
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The direct dynamic compliance surface can be displayed separately for each eigenmode,
see Figure 8 for the example of the first eigenmode of the system shown in Figure 7.
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Previous experiments done on a lathe [4] have proven that the 2D plane oscillating system
model is acceptable for simplification to oscillation only in the XY plane, perpendicular to the Z
axis, which means for mathematical identification based on the Equation (3), only i = 2 can be taken
into account.

4. Structural Model of Feed Drive Axis

This chapter deals with approaches used to create linear axis models. The linear motion axis of a
machine tool is approximated using one-mass or N-mass systems.

4.1. One-Mass Model of Linear Motor Feed Drive

A single-mass model can be used to represent the linear motor feed drive. A cascade control
system with velocity PI and position P controller is shown in Figure 9. The direct transfer function in
the system endpoint N can be written as GR(s) = yN/F1ext. F1ext represents the external force acting
on the mass closest to the motor-first mass (can be easily replaced by the increased current input).
FM(s) stands for the transistor converter transfer function. Its transport delay Td can be replaced by
the Padé approximation. Filters, which are not shown in the control system (usually low-pass and
band-stop filters), may be included in the transfer function FM(s). The major feature of the position
controller is that limGR(s)

∣∣∣s→0 = 0 , meaning that the static compliance is equal to zero at 0 Hz.
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4.2. N-Mass Model of Linear Motor Feed Drive

More complex mechanical structures can be described by a N-mass model, as illustrated in
Figure 10. The motor input force is denoted as F1, excitation force used for feed drive diagnostics is
denoted as F1ext, and the machining force acting at the mechanical system end point is denoted as FN.
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The mechanical model dynamic compliance matrix Gmech(s) is a symmetric matrix derived from
the mass, damping, and rigidity matrixes M, B, K with a dimension N ×N. Mass matrix M is diagonal,
dumping matrix B and stiffness matrix K are band symmetric matrixes. All the sub–transfer functions
of Gmech(s) have the same denominator denGmech(s) (2N polynomial expression).

Gmech(s) =
y(s)
F(s) = inv

(
s2M + sB + K

)
=


G11(s) · · · G1N(s)

...
. . .

...
GN1(s) · · · GNN(s)


= 1

denGmech


numG11 · · · numG1N

...
. . .

...
numGN1 · · · numGNN


(4)

Assuming only F1 and FN as acting forces, position y1 and yN can be evaluated as:

y1 = G11F1 + G1NFN; yN = GN1F1 + GNNFN (5)

The motor force acts on the first mass and the cutting force on the last mass. That means that the
relevant model transfer functions are only corner expressions:

G11, G1N = GN1, GNN (6)

The motion axis block scheme is shown in Figure 11. The complete current control is labeled by
GI(s) symbol only. N-mass system dynamics is represented by the quadrupole, which is composed of
the transfer functions in Equation (6).
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The introduced block diagram can be algebraically described by following two equations:

y1(s) = G11[F1 + F1ext] + G1NFN (7)

yN(s) = GN1[F1 + F1ext] + GNNFN (8)
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4.3. General Dynamic Compliance Matrix of Mechanic Structure and Feed Drive Control

The coupled system of mechanics and feed drive control, described by the transfer function matrix
GR (s), with inputs on the motor F1ext and on the N-mass FN and with corresponding outputs y1 and
yN, is expressed by the diagram in Figure 12.
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Transfer function Areg(s) covers the controller dynamics (according to the blue highlighted part in
Figure 11).

Areg(s) = −
F1(s)
y1(s)

= (KV + s)KpKF
Tns + 1

Tns
GI(s) (9)

The general dynamic compliance matrix GR(s) includes the complete cascade control, which is as
symmetrical as the Gmech(s) (introduced in Equation (4)) but has only 2× 2 dimension (two inputs and
two outputs). Every sub-transfer function of matrix GR(s) is expressed as an algebraic transcript of the
block diagram shown in Figure 11.

GR(s) =
y(s)
F(s)

=

 y1
F1ext

y1
FNyN

F1ext

yN
FN

 = [
GR11(s) GR12(s)
GR21(s) GR22(s)

]
, GR12(s) = GR21(s) (10)

The sub-transfer functions have the same common feature, which is the identical denominator of
each sub-transfer function denGR(s) = 1 + Areg(s)G11(s). Only the indirect position measurement is
taken into account. For the case where the cutting force FN = 0, the motor force F1 = −y1Areg and the
system is excited by F1ext, given, e.g., by white noise. The first two expressions of matrix GR(s) are:

GR11(s) =
y1

F1ext
( f or FN = 0) =

G11

1 + AregG11
(11)

where: y1 = G11
[
−y1Areg + F1ext

]
, based on Figure 11, Equations (7)–(9).

GR21(s) =
yN

F1ext
( f or FN = 0) =

GN1

1 + AregG11
(12)

where: yN(s) = GN1
[
−y1Areg + F1ext

]
.

For the other case, where the system is excited by the external force FN and the first mass is
not affected by F1ext = 0, the inner motor force is still generated though F1 = −y1Areg, the last two
expressions of matrix GR(s) are:

GR12(s) =
y1

FN
( f or F1ext = 0) =

G1N
1 + AregG11

(13)
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where: y1(s) = −y1AregG11 + G1NFN.

GR22(s) =
yN

FN
( f or F1ext = 0) =

GNN + Areg
(
GNNG11 −G2

1N

)
1 + AregG11

(14)

where: yN(s) = −y1AregGN1 + GNNFN.
The symmetry of the GR(s) matrix follows from the mechanical model dynamic compliance

Gmech(s) matrix symmetry where G1N = GN1, thus GR12 = GR21.
The relevant transfer function in the self-excited or chatter identification theory is GR22(s).

Experimental identification of this particular transfer function requires a powerful vibration source.
The easiest way of identifying the stability limits based on this transfer function is to obtain the necessary
parameters through the transfer function GR11(s), which can be easily experimentally identified with
the following:

• y1 can be obtained from the motor current commutation position sensors.
• F1ext motor force can be simulated by the additional current source.

GR22(s) transfer function reconstruction follows based on Equations (11)–(14). This methodology
can be applied to any milling machine axis.

5. Feed Drive Coupled Model of the Machining Center

This chapter describes the application of the models shown above. The model of mechanics with
feed drive control is demonstrated on the example of the vertical milling center shown in Figure 2.

5.1. Machine Tool Spindle

In general, the 3D space one-mass model of the spindle, which was described in chapter 0,
is simplified to a model with two degrees of freedom for the purpose of modeling the dynamics of a
vertical machine in the XY plane (see Figure 4). In Equation (3), therefore, it is considered for i = 2.
Figure 13 shows the real part of direct frequency dynamic compliance depending on the direction of ϕ.
The real part minimum is found approximately at 96 Hz for the 100◦ direction.
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5.2. Machine Tool XY Cross Table

A CAD model representing the mechanical structure is presented in Figure 14, and its dynamic
scheme is in Figure 15.
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5.2.1. X Axis

The one-mass model from the Figure 9 is applied with the following feed drive parameters KV = 4,
Kp = 80, 000 Ns/m and Tn = 6 ms obtained from the Sinumerik control system. It is not possible to
describe this system as just one-mass with a direct position measurement due to the X axis coupling
with the Y axis, therefore the model is improved by including the dynamic model of the traverse Y
axis. Despite this coupling effect, the relevant bandwidth of the X axis is lower than the one that
appears in the model caused by additional compliance in the Y axis (see the block diagram in the
Figure 16. Real machine measurements and mathematical simulation are shown in the Figure 17).
The parameters used for this simulation are based on the machine mechanical construction described
in [19] and summarized in Table 1.

Dynamic compliance determination was done within the control panel diagnostic environment,
see Figure 17a. Identified simulation models (see Figure 17b) are divided based on the model
complexity into:

• Model 1—represents the complete system shown in Figure 16 including inner GI(s);
• Model 2—represents the system where the current transfer function is simplified:

GI(s) = Iout/Iin = 1 and is accepted for further modelling;
• Model 3—represents the system where the velocity transfer function is simplified:

GV(s) = vout/vin = 1.
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Figure 17. Experimental measuring on the mid-sized vertical machine X axis (a), and mathematical
simulation (b).

Table 1. Axis X mechanical parameters.

Symbol Value Unit

Mass 1 m1 250 kg
Mass 2 m2 350 kg

Stiffness kx 1.6× 106 N/m
Damping ratio ζx 0.6 –

5.2.2. Y Axis

The two-mass model with the indirect position measurement is applied on the Y axis, shown in
Figure 15 (the block diagram is identical to that shown in Figure 11). Transfer function GR11 is
experimentally determined for the following parameters KV = 4, Kp = 160, 000 Ns/m, and Tn = 6 ms
obtained from the Sinumerik control system and the results can be seen in Figure 18. The experimental
measurement is performed through the user interface of the Sinumerik machine control system using
the disturbance frequency response type of measurement. A mathematical model is developed based
on the motion axis mass values. The mathematical simulation is then obtained and compared with
the measured values. The reconstructed transfer function GR22 (based on Equation (14)) is shown in
Figure 19. Mechanical parameters are again obtained from [4] and summarized in Table 2.
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Figure 19. Reconstructed axis Y model dynamic compliance GR22.

Table 2. Axis Y mechanical parameters.

Symbol Value Unit

Mass 1 m1 250 kg
Mass 2 m2 350 kg

Stiffness ky 9× 106 N/m
Damping ratio ζy 0.21 –

A significant advantage for the two-mass system is that the transfer function GR22 denominator
can be solved directly from the mechanical structure dynamic compliance matrix as:

G11(s)G22(s) −G2
12(s) = detGmech(s) (15)

Adding up the direct dynamic compliances of the X, Y axes using the goniometric functions,
the system of general dynamic compliances of the cross table is obtained for every applied force direction.
Real parts of the dynamic compliance are then derived and shown in Figure 20. The degree-labeled
directions are chosen so the directions in the cross table matches the direction in the middle measurement
in Figure 5.

The resulting real parts of the dynamic compliance of the whole system including the spindle
part and the XY cross table part in the measured directions are created by adding the spindle dynamic
compliance from Figure 13 and cross table parts from Figure 20 together. The sum is in Figure 21;
minimum values can be seen for each direction. For this direction, the two-mass system with mechanical
parameters based on the spindle structure (detailed in Table 3) is taken into an account, see Figure 22
(including frequencies over 100 Hz is not relevant for the investigation of feed drive stability effect,
which is why the model is not corresponding above this frequency).
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Table 3. Spindle model parameters.

Symbol Value Unit

Mass m 550 kg
Stiffness one direction k1 1.875× 108 N/m

Stiffness in perpendicular direction k2 0.12× 108 N/m
Damping ratio one direction ζ1 0.014 −

Damping ratio in perpendicular direction ζ2 0.45 −
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Figure 22. Spindle and its model transfer function—100◦.

Comparing the frequency domain with the minimum of the real part in Figure 20 (approximately
52 Hz) and Figure 13 (approximately 96 Hz), it can be seen that in the examined machine, there is a
major compliance contribution by its spindle, see Figure 21. This result cannot be generalized and,
in different machines the results can be preferable for the feed drive system, for example in machines
with a sophisticated mechanical structure.

6. Impact of Feed Drive Control Parameters on Machining Stability Prediction

Identification for one direction of machining is processed. The angle of 100◦ was selected,
see Figure 5, to demonstrate the influence of the feed drive parameters’ control on the overall stability
in the machining process. Based on Formula (1) the critical depth of chip bcrit is determined by the
minimum of the Gy( jω) transfer function real part. Figure 23 shows a slight change in the lower
frequencies (approximately 40 Hz) based on the different constant KV tuning.
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A construction of the resulting stability based on the feed drive parameters’ control of the SLD is
shown in Figure 24. The shift is seen in the limiting depth of the cut based on the feed drive parameters’
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control; in the presented case, the velocity regulation gain KV is applied. The critical depth of cut bcrit
is given by the global real part Gy( jω) minimum shown in Figure 23 for the frequency, approximately
90 Hz. The influence of feed drive parameters is seen in the area of 40 Hz.J. Manuf. Mater. Process. 2020, 4, 111 15 of 18 
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Figure 24. Stability lobe diagram SLD diagram for various KV set-up

In the SLD in Figure 24, it is possible to focus on the shift in the depth of cut limits, for example,
for the 50 revolutions per second (RPS) area. The comparison in cut difference is summarized in Table 4,
where the 10.4% difference in the limit depth of cut blim as a local value is presented for the different
feed drive parameter control.

Table 4. Chip width limit for 50 RPS.

KvX, KvY [(m/min)/mm] blim [mm] Ratio [%]

1 9.2 109.5
4 8.4 100
5 8.25 98.2

7. Conclusions

This paper describes modeling strategies of machine tool mechanics on an example of a mid-size
vertical machining center. A one-mass model of the spindle with three degrees of freedom in 3D space
is introduced. The model shows a significant directional dependence of the dynamic compliance
for individual eigenmodes. An XY cross table model of the machine tool is represented by GR(s)
matrix of 2× 2 dimensions. Based on the fact that it is not always possible to experimentally measure
the transfer function GR22(s), the reconstruction from the experimentally measured transfer function
GR11(s) was used.

The research focused on the impact of the XY cross table feed drive control parameters on the
machining stability prediction using the developed model. In the direction with a deviation of only 10◦

from the X axis of the machine (in the text it is usually labeled as 100◦ direction), the most significant
compliance of the spindle was found. In this direction, the resulting dynamic compliance between the
spindle and the XY cross table was then coupled, and the influence of the proportional position loop
gain on the prediction of machining stability limits was investigated. Compared to the initial setting of
KV = 4, a reduced setting of KV = 1 and an increased setting of KV = 5 was tested. The maximum
increase in the stable chip depth occurs by approximately 11% when compared to KV = 1 and KV = 5
proportional position loop gain.
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The study shows for the vertical machining center with linear motor feed drive, that a slight
increase in the limit depth of cut can be achieved by changing the proportional position loop gain.
However, this increase is limited to a narrow speed range of the stability gaps and therefore the
practical use is very limited in a particular case but can be significant for machine tools with very
low natural frequencies, where the dynamic compliance of the feed drive control coincides with the
machine tool compliance.

Further research will be focused on verification of the dynamic properties of the spindle in the XY
plane using experimental modal analysis and FEM computational models. Additionally, systematic
research into the influence of velocity loop parameters and filters will be processed.
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Nomenclature

Areg Controller dynamic transfer function
b1, b2, . . . bN , by [Ns/m] Damping coefficient
bcrit [m] Critical depth of cut
blim [m] Local limit depth of cut
CF Directional force cosine vector
FF Additional force transfer function
G11, G12, . . . , G1N, G2N, . . . , GNN Mechanical model dynamic compliance matrix entries
GI Current transfer function
Gmech Mechanical part transfer function
Gmech Mechanical model dynamic compliance matrix
GR Cross table transfer function
GR General dynamic compliance matrix
GR11, GR12, GR21, GR22 General dynamic compliance matrix entries
Greal Real part of G transfer function
Greg Feed drive transfer function
GS Spindle transfer function
GV Velocity transfer function
Gy Machine and drive transfer function
Iin Current input signal
Iout Current output signal
k1, k2, . . . kN , ky [N/m] Stiffness
KC [MPa] Cutting force coefficient
KF [N/A] Force constant
KP [Ns/m] Proportional velocity loop gain
KPI [V/A] Proportional current loop gain
KV [1/s], [m/min/mm] Proportional position loop gain
Td [s] Time delay
TN [s] Velocity integration constant
TNI [s] Current integration constant
uF [m] Displacement in the force direction
vi Eigenvectors
vin Velocity input signal
vout Velocity output signal
x1, x2, . . . xN , xNC [m] Linear scale
y0 [m] Requested chip thickness
y1, y2, . . . yN , yNC [m] Linear scale
yN [m] Real cutting depth
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ζx [–] Damping ratio
ςqi Modal damping
Ωi [1/s] Natural frequencies
b [m] Chip width
B Damping coefficients matrix
F Acting forces vector
F, F1, . . . , FN , F1ext, Fmot_y, Fmot_x, [N] Acting forces
FEM Finite Element Method
K Stiffness matrix
L [H] Inductance
M Mass matrix
m, m1, m2, . . .mN [kg] Mass
R [Ω] Resistance
RPS Rounds per second
s Laplace operator
SLD Stability lobe diagram
x, y, z Axis direction
y [m] Actual position
y Linear scale vector
ϕ [◦] Angle of measurement
ω [1/s] Frequency
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