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ABSTRACT
For the first time, a dynamic beamshaping technology has been utilized for the efficient
production of periodic nanostructures on top of AlTiN coating to enable dry machining
without costly and environmentally hazardous cutting fluids. First, a variety of periodic
nanostructures with periods in a range of 740–273 nm were produced utilizing different
wavelengths. Additionally, beamshaping technology increased productivity by 4008% up to
105 cm2 min−1 by shaping the Gaussian beam into a rectangular beam of 500 × 30 µm. To
simulate the application load and resulting heat production during manufacturing, friction
analysis was performed at room and elevated temperature to 500°C. The analysis revealed a
significant reduction in the friction coefficient – up to 27% and 19% at room temperature
and 500°C, respectively. The combination of these results demonstrates that the proposed
method can be scaled up for the mass production of functionalized machining tools for dry
machining.
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Introduction

Modification of tribological properties by surface
micro and nanostructuring is a popular topic for
many research institutions around the world. Optimal
surface topography can improve load capacity, wear
resistance and decrease friction coefficient compared
to the untreated surface under dry, boundary and
hydrodynamic lubricant conditions [1–4].

Conventional nanostructuring methods include
chemical vapour deposition [5], chemical etching
[6], thermal embossing [7], lithography [8], sol–gel
[9,10], plasma treatments [11,12], electrodeposition
[13,14] or laser surface texturing (LST) [15–17]. How-
ever, most of these techniques require several proces-
sing steps, chemicals or too long processing times to
be implemented in an industrial environment.
Among these, LST offers a flexible, fast and environ-
mentally friendly method for high-quality fabrication
of desired micro and nano topography with high pre-
cision on a large variety of materials [1,18]. LST has
been widely implemented for the improvement of tri-
bological properties of mechanical components,
including bearings [19], piston rings [20], facing
seals [21] and cutting tools [22].

Typical surface topography of laser-treated surfaces
improving friction properties is composed of arrays of
micro-dimples [23] or laser-induced periodic surface
structures (LIPSS) with spatial periods in the sub-
micrometre range, which are formed in a ‘self-
ordered’ way during the laser irradiation of the surface
[24,25]. The great flexibility and variability of pro-
duced LIPSS and ripple structures allow a simple
and robust way for surface nanostructuring to
improve tribological performance [25].

Despite the demonstrated capability of lasers to
produce functional friction-reduction surfaces, the
production speed of LIPSS-based functional surfaces
is still low with respect to many industry standards.
Generally, throughputs only up to a few cm2 per min-
ute are reached by conventional single-beam
approaches [25]. However, recently demonstrated
high-power ultrashort laser systems [26] open possibi-
lities to upscale standard single-beam methods
towards multi-beam simultaneous fabrication for fast
rapid large-scale surface nanostructuring [27–29].
An alternative can be dynamic beamsplitting [30] or
large-beam direct laser interference patterning
[31,32], which can also efficiently utilize high-power
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laser systems or precise fabrication of functional
nanostructures.

In industry, the suitable material for a protective
barrier against wear is titanium nitride (TiN) based
coatings. The main area of using TiN coating is for
cutting tools. Enhancing TiN with aluminium,
AlTiN coating becomes hard, oxidation resistant and
stable in extreme cutting conditions. Compared
with, e.g. diamond-like carbon (DLC) coatings, the
high friction coefficient of AlTiN coating can be a
limit. Due to this reason, a combination of coated
tools with cutting fluids is commonly used. However,
cutting fluids are becoming the more evident cost
during cutting processes and they are dangerous to
the environment [33].

Dry machining with nanostructured cutting tools
has a big potential to replace the use of environmen-
tally hazardous cutting fluids. Additionally, despite
the fact that cutting temperature has a major effect
on tool wear and durability [34], the complex, com-
prehensive analysis simulating the working load and
especially the temperature of cutting tools is still
lacking.

Thus, the objective of this work is to investigate the
influence of different kinds of LIPSS nanostructures
on the tribological performance in dry conditions of
AlTiN coating deposited on a 1.2379 tool steel sub-
strate. To investigate different designs of LIPSS, ultra-
short laser systems were applied with the module for
the generation of second and third harmonic wave-
length. Additionally, to further increase throughputs,
a combination of high-power laser sources with a
unique fabrication method utilizing dynamic beam-
shaping technology for efficient and productive
nanostructuring of AlTiN coating were applied for
the first time. The following unidirectional ball-on-
disc and reciprocating tribology analysis were carried
out in room and elevated temperature up to 500°C
to simulate the working load of a cutting tool.

Materials and methods

Coating deposition

The AlTiN coating was prepared by High Power
Impulse Magnetron Sputtering (HiPIMS) technique
using Oerlikon Balzers Domino Micra industrial coat-
ing machine. The sputtering was done from com-
pound Ti/Al (50:50) targets from two magnetrons
opposite to each other. Prior to the coating process,
the AEGD etching process was applied for 40 min to
improve the adhesion of the coating. The total
pressure during deposition was 570 mPa of Ar:N2
mixture with a partial pressure of 8.8% of N2. The sub-
strate temperature was 300°C and bias voltage was
−160 V. The power on Ti/Al targets was 10 kW each
with 50 µs negative pulse, 4% duty cycle and frequency

of 800 Hz. The peak power measured by oscilloscope
was 241 kW on each magnetron. The substrate bias
pulse was delayed by 10 µs from the magnetron pulse.

Totally 14 samples made of hardened 1.2379 tool
steel substrate with a diameter of 25 mm and thickness
of 8 mm were placed into the coating machine and
deposited for 8 h. As a result, AlTiN coating with
thickness of about 2 µm was obtained. Coating
adhesion was estimated to about 35 N by using scratch
test method. The resulting AlTiN coating had a hard-
ness of approximately 3300 HV.

Laser processing

Two different processing stations which were able to
generate higher harmonics or shape the beam by
spatial light modulator (SLM). The first station utilizes
laser system Carbide CB3-40W (Light Conversion,
Lithuania) producing 0.8 mJ pulses with adjustable
pulse duration in a range of 250 fs to 10 ps with a rep-
etition rate up to 1 MHz and power up to 40 W at
1030 nm. In addition, the laser system is equipped
with a module for higher harmonics generation pro-
ducing 515 and 343 nm. The generated beam was
guided through the beam expanders to the galvo scan-
ning system (eLas, Lithuania) combining two separate
galvo scanners IntelliScan 14 (Scanlab, Germany), the
first for 1030 and 515 nm and the second for 343 nm
wavelength. Both galvo scanners were equipped with
100 mm f-theta lens resulting in a spot size of 35 µm
for 1030 nm, 30 µm for 515 nm and 20 µm for
343 nm.

The second processing station utilizes laser system
Perla (HiLASE, Czech Republic) emitting 1.7 ps pulses
with M2 of 1.15 and wavelength of 1030 nm. The laser
system generates up to 200 W at 100 kHz repetition
rate resulting in 2 mJ pulse energy. To increase the
efficiency during the production of nanostructures
the incident laser beam was guided into the dynamic
beam shaping unit FBS G3 (Pulsar Photonics
GmbH, Germany) equipped with an SLM (Hama-
matsu Photonics, Japan), which is able to shape the
beam according to the pre-calculated computer-gen-
erated hologram (phase-mask) uploaded to the SLM
(see Figure 1). The output beam is guided into the gal-
vanometric scanner IntelliScan 14 (Scanlab, Germany)
and focused on the sample by 100 mm telecentric F-
theta lens.

Sample analysis

Adhesion and coating thickness were measured by the
ball-cratering method (CSM Calotest, bearing ball of
30 mm in diameter) and scratch test (CSM Revetest,
testing load 0–100 N).

The beam shape was analysed by Basler ace
acA3080-10µm camera with a pixel size of 1.67 µm.
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The surface morphology was investigated by laser
scanning confocal microscope, Olympus OLS5000
and scanning electron microscope, Tescan MIRA, at
electron energy of 15 keV.

The surface roughness of the laser-processed coat-
ings was investigated using 3D optical profilometry
(Zygo NV7200). Due to the unidirectional grooves
made by laser texturing, the 3D surface roughness
mapping method was used in order to average the
roughness in-homogeneity obtained from the linear
2D tests carried out in several directions on the
surface.

Friction test

The tribological properties were tested by pin-on-disc
(ball-on-disc) method. Alumina (Al2O3) ball with a
diameter of 6 mm was used for running the friction
test at room temperature (RT) and at 500°C. When
the temperature increases, mechanical properties of
AlTiN coating could change to a certain extent [35].
Due to this reason, testing at high temperatures is
critical for simulating the structured tool behaviour
during the working load. Other details and testing par-
ameters of the tribological tests are listed in Table 1.

From the obtained data, the evolution of the fric-
tion coefficient (CoF) as a function of time and the
number of cycles was analysed. Additionally, the ball
wear rate and coating wear rates (both in units mm3

Nm−1) were calculated from the 3D images of the
worn testing balls and worn coating surfaces using

white-light optical profilometry (Zygo NV7200).
This measurement was performed only for samples
showing the best frictional properties.

Results and discussion

In the first set of experiments, optimal laser and pro-
cessing parameters for the production of periodic
nanostructures by different wavelengths were deter-
mined (see Table 2, Samples 1–3). Utilizing these par-
ameters, different kinds of periodic nanostructures
can be fabricated on the top of AlTiN coating comple-
tely rewriting the original coating microstructure, as
depicted in Figure 2.

As can be observed in Figure 2(b–d), shorter wave-
length leads to a change in structure periodicity. The
longest period of 740 nm was observed for the struc-
tures fabricated by Carbide laser generating wave-
length of 1030 nm (Sample 1). Utilizing second and
third harmonics generation, periodicity decreased to
370 nm (Sample 2) and 273 nm (Sample 3) for the
wavelength of 515 and 343 nm, respectively. As
shown in Table 2, lower periodicity results in shorter
hatch distance and thus lower productivity, which
reached only 0.65 cm2 min−1 for the wavelength of
343 nm. Moreover, generation of shorter wavelengths
is connected with a loss in average power – only 20
and 11 W are available for the wavelengths of 515
and 343 nm compared to 40 W at the fundamental
wavelength of 1030 nm.

Figure 1. Schematics of beamshaping experimental setup with insets of the input beam, calculated phase mask for rectangular
beam shaping and final beam shape in the image plane.
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To address these issues, beamshaping technology
was applied in combination with high energy pulsed
laser system Perla. To increase the productivity and
minimize the power loss, only the fundamental wave-
length of 1030 nm was used with a shaped beam into
the line with dimensions of 500 µm ×30 µm (see
Figure 1). The shaped beam was then scanned over
the sample in a direction perpendicular to the line
axis. By optimizing the laser and processing par-
ameters LIPSS structure similar to Sample 1 was fabri-
cated on Sample 4 (see Figure 2(e)) with productivity
reaching 105 cm2 min−1, 40 times faster compared to
the single beam approach (2.62 cm2 min−1). In the
next step, periodicity of produced LIPSS structures
was tailored by different scanning speeds. By decreas-
ing the original scanning speed of 0.7–0.4 and 0.1 m
s−1 the periodicity decreased from 740 to 205 and
170 nm and productivity decreased to 60 and 15 cm2

min−1, respectively. As can be observed in Figure 2
(f,g), the LIPSS are much shorter when slower scan-
ning speeds are applied.

In the following step, surface roughness analysis
was performed (see Figure 3). Generally, the surface
roughness values are very sensitive to the heights
and lateral dimensions of the LIPSS structures. Thus,
to obtain presented Ra values the 3D analysis of the
laser-textured coatings was performed to obtain aver-
age values for all lateral directions regardless of the
directions of the laser grooves. As can be observed
in Figure 3, the roughness of the laser-processed sur-
faces clearly corresponded to the size of the surface
grooves observed in the SEM images (Figure 2). The
drops and rises of the roughness values primarily
depend on the surface grooves’ sizes (periodic imper-
fections) and long-distance surface asperities (random
imperfections). The roughness analysis revealed that
the smooth as-deposited coating surface exhibits the
lowest roughness. Moreover, the low standard devi-
ation demonstrates homogenous roughness values
regardless of the scanning direction.

After heating the sample up to 500°C, the average
roughness values did not change (not shown). Investi-
gation of the surface by optical microscope showed a
slight change of colour that is typically caused by the
growth of a thin oxide layer on the top coating surface.
However, a thin oxide layer generally has no effect on
the friction and wear process.

After the laser processing, samples were subjected
to tribological analysis at both room and elevated
temperature of 500°C to simulate the application
load and resulting heat production during manufac-
turing with functionalized tool. As can be observed
in Figure 4, structures produced by different wave-
lengths have substantial effect on tribological behav-
iour during the friction run-in phase where we can
observe significant improvement in the coefficient of
friction (CoF) for laser-treated surfaces.

At room temperature, the LIPSS with the highest
periodicity of 740 nm produced by the 1030 nm wave-
length led to 21% improvement of the CoF after 500
cycles (Sample 1) compared to the reference value.
For the shorter LIPSS period of 370 nm the CoF
decreased by 32% (Sample 2) compared to the refer-
ence sample after 500 cycles. Interestingly, the shortest
LIPSS period fabricated by UV wavelength (Sample 3)
improved the CoF only in between 50 and 300 cycles.
At 500 cycles, the CoF was the same as for the refer-
ence sample, implying that nanostructures were
already worn out. The improvement of 27% (from
0.671 to 0.489) in friction coefficient after 500 cycles
for Sample 4 is in accordance with a similar structure
on Sample 1. However, decreasing the LIPSS period-
icity by slower scanning speed did not improve the
CoF. Structure on Sample 5, with the periodicity of
205 nm improved friction coefficient only by 14%
and the smallest 170 nm period on Sample 6 had the
same CoF after 500 cycles as the reference sample.

By heating the sample, situation changed dramati-
cally. All laser-treated samples had higher CoF for
the first 50 cycles and after 500 cycles only the robust

Table 1. Friction test parameters.
Ball Ball diameter [mm] Track radius [mm] Number of cycles Temp. [°C] Environment Load [N] Sliding speed [cm s−1]

Al2O3 6.00 3.00 1000 RT dry 5 5
Al2O3 6.00 4.50 1000 500 dry 5 5

Table 2. Laser and processing parameters.

Laser source CARBIDE Perla

Sample indication Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Wavelength (nm) 1030 515 343 1030
Pulse duration (ps) 267 270 271 1.7
Repetition rate (kHz) 200 100
Fluence (J cm−2) 0.82 0.15 0.22 0.7
Scanning speed (m s−1) 0.4 0.2 0.2 0.7 0.4 0.1
Spot size (µm) 35 30 20 500 × 30
Hatch distance (µm) 12 12 6 150
Productivity cm2 min−1 2.62 1.31 0.65 105 60 15

Note: Samples 4–6 are fabricated by shaping the beam into 500 × 30 µm top-hat line.
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LIPSS with a periodicity of 740 nm improved the CoF
by 19% (from 0.677 to 0.551). Contrarily, LIPSS with
shorter periods did not improve the CoF after 500
cycles (Figure 5).

We can conclude that all tribological measurements
at elevated temperatures were affected by specific
changes in the coating structure that resulted in sig-
nificantly distinct CoF evolution observed for the
reference sample. At 500°C, the AlTiN surface is
stabilized by surface oxides and the typical columnar
coating structure on the top of the coating could
change as well.

In all cases, LIPSS structures only affect the surface
of the coating to about 50 nm in depth. Thus, start to
be significantly worn out for higher number of cycles
(above 500), and reaching a similar CoF as the refer-
ence after 1000 cycles, as demonstrated in Figure 6.
Therefore, LIPSS had no significant effect on the
CoF stabilization in the steady-state phase (500–1000
cycles).

Thus, the most significant results are reached for
the run-in phase where the wear rates of both interact-
ing surfaces are typically the highest. It should be
pointed out that for the most interacting surfaces,
the run-in phase has a crucial effect on the steady-
state tribology as well as on the durability and lifetime.
The benefits of the laser-processed surfaces lay in the
significantly lower CoF and much slower stabilization
of the CoF value in the run-in phase that could,
depending on the surface structure, result in lower
wear of the interacting surfaces.

Based on the above results, the most robust struc-
tures with a periodicity of 740 nm on Sample 1 and
Sample 4 exhibited the best overall performance
regarding the friction reduction at both, room and
elevated temperature to 500°C. Therefore, Sample 1
and Sample 4 structures were selected for the analysis
of the wear rate of the testing ball and coating.

The wear rates of the testing ball were calculated
from the mean dimension of the contacting area
recorded by the 3D surface profilometry. The wear
rates of the coating surface were determined from
the multiple wear track 3D profilometry. The volume
of the worn material was calculated from several wear
track cross-section profiles subtracted from the
unworn surface profiles. The total worn volume has
to be normalized by load and total distance that the
ball travelled in the wear track during the tribological
test. As a result, the values of the wear rates in units of
10−6 mm3 Nm−1 are presented. Results obtained from
the analyses of the reference sample as well as of
Samples 1 and 4 at room temperature and at 500°C
are shown in Figure 7.

Generally, all obtained values of the coating wear
rate were very low. The maximum wear depth in all
cases did not exceed 300 nm. Hence the laser-made

Figure 2. Overview of fabricated nanostructures. (a) reference sample coated by AlTiN; (b) LIPSS fabricated by 1030 nm and 0.82 J
cm−2; (c) LIPSS fabricated by 515 nm and 0.15 J cm−2; (d) LIPSS fabricated by 343 nm and 0.22 J cm−2; (e–g) LIPSS fabricated by
1030 nm and shaped beam with 0.70 J cm−2 and the scanning speed of 0.7 m s−1 (e), 0.4 m s−1 (f) and 0.1 m s−1 (g).

Figure 3. Typical surface roughness Ra values of the as-depos-
ited and laser-textured samples.
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structures were already worn out, but the coating life-
time was not yet significantly affected. At room temp-
erature, the wear rate of the reference sample was
significantly higher compared to the hardly detectable
wear track at 500°C. The wear rate values of the laser-
processed coatings were well-comparable to the results
of the reference sample. After the run-in phase, the
textured surface was worn out and further friction

and wear evolution could be similar because no sig-
nificant in-depth change of the coating material
caused by the laser-processing was expected. However,
the coating wear rates were significantly higher at elev-
ated temperatures. This could be caused by a much
larger specific surface after laser processing and pro-
nounced surface oxidation that could be responsible
for higher production of hard wear debris present in

Figure 4. Typical CoF curves obtained at room temperature (a) for samples processed by different wavelengths (a) Samples 1–3
and for samples processed by productive beam-shaping technology in the IR region (b) Samples 4–6.

Figure 5. Typical CoF curves obtained at 500°C (a) for samples processed by different wavelengths (a) Samples 1–3 and for
samples processed by productive beam-shaping technology in the IR region (b) Samples 4–6.

Figure 6. Demonstration of the stabilization of the CoF evolution for 500–1000 cycles.
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the tribological contact. Second, due to the laser sur-
face texturing that changed the initial surface rough-
ness, the testing ball underwent a distinct wear
evolution during the run-in phase that could have sig-
nificant consequences for the coating wear evolution
and the resulting value at the end of the test itself.
These effects were observed in the ball wear scars
(marked by arrows Figure 8) as well as in the coating
wear tracks (Figure 9). The optical analysis of ceramic
balls used for the friction test showed that the ball run-
ning against Sample 4 was worn by both the abrasion
and the adhesion mechanisms at the same time,
significantly increasing the ball wear rate (see

Figure 7(b)). These results suggest that the LIPSS
nanostructure on Sample 4 is more susceptible to
abrasion compared to LIPSS nanostructure fabricated
on Sample 1.

In the wear track on Sample 4, shallow scratches
caused by hard particle ploughing due to abrasion
were observed (Figure 9(b)). Additionally, the corre-
sponding surface of the testing ball was more heavily
covered by the third-body layer as a consequence of
the adhesive wear. With regard to this observation,
we concluded that the typical wear mechanism was a
mixed abrasive/adhesive regime in this particular
test. In the other tests (RT as well as at 500°C), the

Figure 7. The coating wear rates (a) and ball wear rates results (b) calculated from the surface 3D optical profilometry.

Figure 8. Optical analysis of ceramic balls after the tribological test at room and elevated temperature with marked ball wear
scars.

SURFACE ENGINEERING 945



adhesive regime was present. However, the abrasive
effect was suppressed (Figure 9(a)).

Conclusion

For the first time, a dynamic beamshaping technology
has been utilized for a modification of friction proper-
ties on AlTiN-coated tool steel analysed at 500°C,
simulating the workload conditions. The nanostruc-
turing process developed at different wavelengths
enabled LIPSS manufacturing with a periodicity
between 273 and 740 nm. Consequent tribological
analysis revealed that LIPSS with a periodicity of
740 nm exhibited the best overall performance in
both, the wear and the friction improvement at
room and elevated temperature demonstrating up to
27% improvement in CoF after 500 cycles at room
and 19% at elevated temperature to 500°C compared
to the reference. The manufacturing speed of LIPSS
with 740 nm periodicity was significantly improved
by 4008% by shaping the input Gaussian beam into
the rectangular beam of 500 × 30 µm. The combi-
nation of these results shows that the proposed
method can be scaled up for the mass production of
functionalized machining tools which may enable
dry machining. We believe that the results obtained
within this study will help to develop efficient manu-
facturing processes without any costly and environ-
mentally hazardous cutting fluids.
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